Applied Antineutrino Physics Workshop Livermore

Safeguards activities within Double Chooz

Michel Cribier
CEA/DAPNIA/SPP & APC - Paris
mcribier@cea.fr

Safeguard activities:

- > Treaty of NonProliferation (and additional protocole):
 - accepted (and unattended) controls
- Detect Diversion from Civil Fuel Cycles to Weapons Programs of Fissile Material (Pu, enriched U)
- Many places to control all around the world :
 - enrichment units, nuclear fuel factories, power and research reactors, reprocessing units, storage waste...

Standard methods used

- mostly checks of input/ouput declarations
- sampling and analysis (γ-spectroscopy, isotopic content)
- > no direct Pu inventory made at the production place, neither power
- Seeking for new tools to perform future controls on increasing number of installations : ask physicists

Burn-up & Fission

 \Rightarrow \approx 100 tons 3.5% 235 U 96.5% 238 U

$$^{238}_{92}U + n \rightarrow ^{239}_{92}U \xrightarrow{23 \text{ min}} ^{239}_{93}Np \xrightarrow{2.3 \text{ d}} ^{239}_{94}Pu$$

- Grow up of ²³⁹Pu during operation
 ≥ ≈ 200 kg of Pu/y/reactor
- ²³⁹Pu contribute to energy production

Fission & v

Fission products from ²³⁵U or ²³⁹Pu are different, hence v are different

released energy

per fission

Mean

energy of v

v per fission

> 1.8 MeV

average inter.

cross section

neutrinos/MeV/fission

$$\frac{\# int^{235}U}{\# int^{239}Pu} = \frac{210.0}{201.7} \times \frac{1.92}{1.45} \times \frac{3.2}{2.76} = 1.60$$

235

201.7 MeV

2.94 MeV

1.92

Energy (MeV)

Proposal in June 2006: hep-ex/0606025 119 authors from 26 institutions

September 25, 2006

Michel Cribier

8/23

- Fuel in N4-reactors
 - > 120 tons of UO₂
 - > 105.7 tons of enriched U
 - > ²³⁵U \approx 3.45% : 3.60 tons
- ⇒ 205 fuel assembly
 - > 264 rods per assembly
 - > 272 "pastilles" per rods
 - > 8 g per "pastilles"
- Loading/unloading
 - by quarter
 - > every 8 months or 12?
- Yearly elect. energy
 - > 4.7 10¹⁶ J = 13 TW.h
 - > 34.4 % efficiency (th->el.)
- Nominal energy extracted from fuel
 - > 45 GWd/ton = 3.89 10¹⁵ J/tons*
 - * tons of enriched Uranium

Distances in meters from G. Mention near detector

	B1	B2
core	293.5	263.4
pool	259.0	224.3

Far detector

	B1	B2
core	1114.7	998.0
pool	1141.8	1028.1

12/23

The near laboratory

- ⇒ ≈ 45 m deep shaft
- * a cavern
- ⇒ overburden ≈ 80 mwe
- to be built in cooperation with EDF
- ready in 2009

September 25, 2006 Michel Cribier 13/23

Detector layout

Gd-loaded liquid scintillator

- Scintillator : compatibility and safety
 - 20% PXE + 80%Dodecane + PPO (≈ 6 g/l)+ bis-MSB (≈ 20 mg/l)
- Gd-compound (1 g/l)
 - Gd-CBX + stabilizers
 - > Gd-DPM
- Test with 100 liters mock-up
- Production into preindustrial phase

Detector response

- Modest variations within target volume
- Good energy reconstruction

µ-induced background

❖ To be compared to
 ▶ 990 v_e per day

- Fast neutrons + μ-capture
 - Geant + Fluka
 - Reliable : reproduce old Chooz bkg rate
 - > rate @ near det. < 6/d
- Accidental
 - single from PMTs
 - neutron from μ cosmique
 - rate @ near det. < 15/d</p>
- Cosmogenic ⁹Li
 - rate @ near det. : 5.3 ± 3.2 /d
- Outer veto to sign near-missed μ

September 25, 2006 Michel Cribier 17/23

A high statistic experiment

- Target : 10.3 m³
- Detect. effic. : 80%
- Dead time: 30%
- Rate with eff.: 554 /d
- 3 years of data taking
 - > 157 000 evts/years

September 25, 2006 Michel Cribier 18/23

Fuel composition from v recording?

- Fit the positron spectrum
 - > % ²³⁵U, ²³⁹Pu,...as free parameters
 - use known different shapes (paramet.)
 - possible but modest precision ≈ 10 % ²³⁹Pu content
- Need to reduce errors (1/3) on v spectrum to achieve few % precision on Pu, P. Huber & T. Schwetz, hep-ph/0407076

September 25, 2006

A comprehensive effort

- Precise ∨ spectrum vs fissile element (²³⁵U, ²³⁹Pu):
 - > high statistic with Double Chooz (near) : 1.6x10⁵ ∨ detected per year
 - correlation with fuel composition, with thermal power
 - > At least a valuable database
- Simulations of the fuel evolution
 - > use
 - MURE

: interface MCNP (static reactor code) and evolution code

- > include diversion scenarios : predict neutrino signature
- Critical evaluation of ß decays spectrum from fission products
 - concentrate on high energy tails
 - large uncertainties due to multiple excited states
 - place to discriminate ²³⁵U vs ²³⁹Pu fissions most clearly
- New experimental program at ILL*
 - Lohengrin spectrometer
 - > see Muriel's talk

- Double Chooz approach
 - > good energy measurement
 - good signal/noise
 - > too sophisticated
 - > expensive

Toward a prototype of monitor

see Thierry's talk

- Songs approach
 - > weak v signature
 - > not enough rejection of background
 - > robust, simple operation
 - automatic
 - cheap

Conclusion

- \Rightarrow Double Chooz for θ_{13}
 - > construction of far detector will begin next spring
 - > an impressively strong collaboration
- Nonproliferation activities within Double Chooz
 - > embedded since the beginning
 - > induce specific developments
 - neutrino spectrum (simulation and measurements)
 - thermal power prototype
 - attract specifically several groups

What is the precision required?

P. Huber & T. Schwetz, hep-ph/0407076, Precision spectroscopy with reactor antineutrinos

The high energy limit

Previous v spectrum studies

- > Schreckenbach et al. PLB (1989) 325-330
 - problems in converting ß to v spectrum
- > Tengblad et al. NPA (1989) 136-160
 - Above 4 MeV: errors increase (5% at 4 MeV, 20% at 8 MeV)
- > C. Bemporad et al. RMP.74 (2002):
 - " 25% of high energy part due to experimentally unknown exotic neutron-rich nuclei "

Role of the excited levels

- Simulation: identification of unknown nuclei of interest: ie contributors and/or discriminating ²³⁵U/²³⁹Pu)
- Build exact spectrum
- Include type of transition allowed/forbidden

Test experiment @ Institut Laue-Langevin High Flux Reactor (Grenoble)

Facility: High-Flux 58.4 MW Reactor

- Neutron flux ~5.10¹⁴ n cm⁻² s⁻¹
- Fission rate $\sim 10^{12}$ fissions/s at target
- ~ 300 ¹³²Sn/s at focal point
- Fission yields depend on target (Np to Cf)

Use of the LOHENGRIN (PN1) online mass spectrometer for unslowed fission products: separates neutron-rich nuclei far from stability

Focal point

Tons are separated according to their A/q values

Refocussing magnet (count rate X 7)

Electric condenser

Target (thickness X

September 25, 2006

Michel Cribier

Dipole magnet

27/23